HamSCI Festivals of Eclipse Ionospheric Science Looking for: Contesters, HF Operators and SWL's

Bill Mader, K8TE, ARRL Section Manager, New Mexico

2023 Rocky Mountain Division Convention

K8TE Background

- •Licensed as WV2RBF Feb 1960 now a Contester & DXr
- •Science NERD with Astronomy Focus 1976-78 in MI
- •2017 Total Solar Eclipse in Lander WY

Band	Mode	QSOs	Pts
7	CW	8	16
7	LSB	1	1
<mark>14</mark>	CW	217	434
14	USB	18	18
otal	Both	244	469

Ham Radio Science Citizen Investigation

HamSCI Booth at the 2023 Dayton Hamvention

Founder/Lead HamSCI Organizer: Dr. Nathaniel A. Frissell, W2NAF The University of Scranton

University Researchers Collaborating with the Amateur Radio Community in Scientific Investigations

Objectives:

- **1. Advance** Scientific Research and Understanding through Amateur Radio Activities
- **2. Encourage** Development of New Technologies to Support this Research
- **3. Provide** Educational Opportunities for the Amateur Radio Community & the General Public

Solar Eclipses - Why the Interest?

- Humankind Always Been Fascinated by Eclipses
- Fear and Ignorance Explain Many Interesting Theories of How and Why Eclipses Occur

Thousands of years ago...

- Ancient Chinese: a Dragon Was Eating the Sun They Beat Drums and Pans to Scare the Dragon Away
- Ancients Felt Groups of Animals Including Wolves Chased the Sun and Moon Across the Sky
- These Animals Occasionally Caught and Ate the Sun or Moon Making Them Disappear Until They Regenerated

Thousands of years ago...

Eclipse Predictions

Centuries ago:

Emperors Tasked Astrologers to Predict Eclipses

If They Missed, They Could be Executed

Modern Times:

- Eclipse Predictions Are Highly Accurate No One's Life is at Risk!
- Accurate Predictions Allow Planning Eclipse Studies of Related Phenomena Years in Advance

This Photo by Unknown Author is licensed under CC BY-SA

amsci.org

Upcoming Solar Eclipses

Annular (2023)

Photo By Smrgeog~commonswiki (https://commons.wikimedia.org/wiki/File:Annular_Eclipse._Take n_from_Middlegate,_Nevada_on_May_20,_2012.jpg)

Total (2024)

Photo by Jim Sackerman, KC2ZFK

Umbra and Penumbra

Moon's Shadow has 2 Parts

- Umbra: Innermost Region: Sun Fully Hidden & Objects in Total Shadow
- Penumbra: Outermost Region: Sun Partially Hidden with Some Sunlight

hamsci@hamsci.org

Total and Annular Solar Eclipses

- Distance Between the Earth and Moon Varies During the Moon's Orbit
- The Moon at Apogee (Farthest from Earth) fits Inside the Solar Disk This Results in an **Annular Solar Eclipse (14 Oct 2023)**
- The Moon At/Near Perigee (Closest to Earth) Completely Covers the Solar Disk This results in a **Total Solar Eclipse (8 Apr 2024)**

Image: quora.com/How-do-I-calculate-the-diameter-of-the-shadow-umbra-cast-by-the-Moon-to-the-Earths-surface-during-a-solar-eclipse

hamsci@hamsci.org

Solar Eclipses - 2023 and 2024

- HamSCI Planning a Full Slate of Events
- Hams and Shortwave Enthusiasts Encouraged to Join the Fun!

• HamSCI is Promoting the Festivals of Eclipse Ionospheric Science

Main Area of Study: The lonosphere

Figure by Carlos Molina (commons.wikimedia.org)

Eclipse Ionospheric Effects

- Solar radiation is blocked During an Eclipse
- the Ionosphere's reaction is Similar to the 24-hour Day-Night Cycle
- But, There Are Differences...

Differences Between Eclipses and Day-Night

- Eclipse is Shorter in Duration
- The Effects are More Localized
- The Shadow Travels at Supersonic Speeds
- Travel is Different from Westward motion of Dawn and Dusk

Eclipses as Controlled Experiments

- We Know & **Can** Predict Solar Energy Input to the Upper Atmosphere from Dusk, Dawn, and the Seasons
- We Cannot Predict Energy from Solar flares, Geomagnetic Storms, or Other Random Events
- We Know Eclipses' with Great Accuracy Thus, They're Considered "Controlled" Ionospheric Experiments

Next Decade of Eclipses

Annular Solar Eclipse: October 14, 2023

Ham<u>S</u>CT

http://hamsci.org

hamsci@hamsci.org

Total Solar Eclipse: April 8, 2024

am<u>SC</u>ï

http://hamsci.org

hamsci@hamsci.org

• Ham Radio Competitions:

Solar Eclipse QSO Party and Gladstone Signal Spotting Challenge

- Participate in a controlled experiment on the 160, 75 or 40 meter bands: Time Delay of Arrival (TDOA) Event
- Build and install a Grape Personal Space Weather Station (PSWS)

QSO Party: The More the Merrier

- Hundreds of Hams Operating Simultaneously Results in Thousands of QSO's and Spots Per Hour
- Ham Radio's Version of a Really, Really Big Room (Potentially the Entire Earth)
- HamSCI Organized the 2017 Solar Eclipse QSO Party (SEQP) A Total Eclipse Transited the North American Continent
- The 2017 SEQP Had a Scientific Purpose: Data Generation and Collection for Ionospheric Science
- Logs and Spots Data Contributed Directly to Scientific Ionospheric Research
- Research Available at <u>hamsci.org</u> Search on "2017 Eclipse"

2017 Solar Eclipse QSO Party Results

Spotting Network Data	Participant's Log Data				
RBN Spots 618	566	Submitted Logs			
WSPRNet Spots 630	29,809	Log QSOs			
PSK Reporter Spots 1,287	4,929	Log Unique Calls			
'Snot' Single Station's Transmiss	649	Log 4-Character Grid Squares			
Automated Reception Report	80	Log DX Entities			
1 1					

Create a Computer **Log** of All QSOs Entered Into a Database Submit **Your** Log to HamSCI After the Event

Solar Eclipse QSO Party 2.0

- •Using the Best Concepts from 2017 Yielded a Fresh Set of Rules, FAQs, etc.
- •6-160 meters (Non-WARC bands) Using CW, SSB and Digital Modes
- •The HamSCI Website Ultimate Resource:
- https://hamsci.org/contest-info
- https://hamsci.org/seqp-faqs
- https://hamsci.org/seqp-rules
- •Results will be published

HamSCI Solar Eclipse QSO Party Rules for 2023 and 2024 Please bookmark this page and join the HamSCI eclipse mailing list for future announcements related to the SEQP. Version 1.01 3 Dec 2022 The following are the complete, detailed rules for the SEQP. For a quick introduction to the SEQP, please visit the SEQP FAQ page. The SEQP is one event within the Festivals of Eclipse lonospheric Science. I) Dates and Times 14 Oct 2023 1200 – 2200 UTC (Partial eclipse begins ~1500 UTC in Oregon ends ~1840 UTC in Texas) 8 Apr 2024 1400-2400 UTC (Partial eclipse begins ~1710 UTC in Texas and ends ~2040 UTC in Maine)

Participants are encouraged to operate before, during and after the eclipse passes over the continental US. Doing so will create baseline data (pre- and post-eclipse), and eclipse influenced data (during annullarity or totality) for the research team.

II) Objective

To generate observations of propagation by the **Reverse Beacon Network** and **PSKReporter** event logs before, during, and after the eclipse on the amateur bands for the purpose of ionospheric sounding.

The Solar Eclipse QSO Party (SEQP) is unique among ham radio competitions as it awards points for twoway QSOs (ham to ham contacts via radio) and bonus points for reception reports from skimmers, RBN nodes and the like.

Appealing to a Broad Range of Interests

Typical QSO Party Participant

George N3GJ, operating at K3LR, courtesy of <u>k3lr.com</u>

Homebrew WSPR Station

Courtesy of wsprnet.org

Inexpensive Single Band WSPR Transmitter

- <u>Weak Signal Propagation</u>
 <u>Reporter</u> "WSPR"
 Digital Mode for
 Beacon Transmissions
- Transmission & Reception
 Largely Automatic
- Results Appear in Real-Time Data Stored for Later Research on the Internet

Map of Signal Spotters and Signal Paths

https://www.wsprnet.org/drupal/wsprnet/map

Database of Signal Spots

Average search time over 1 searches = 0.3 sec [498 spots] 1,056,658km 131,540 avgQ 24 Feb 2023 @ 1400 local														
Table options	find dup	licates	callsign	find call										
wtf? stats	charts	map	table home	e 📃										
1 show search say	ed status ->	[498] Round	trip in 0.25 sec											
Click: Date for utc/local • column label to sort • callsian for country info • mode number for mode name • right click callsian to view that spot on the man														
Local (y-m-d)	тх	txGrid	RX	rxGrid	MHz	w	SNR	drift	km	Az°	mode	km/W	spotQ	version
2023-02-24 13:58	G4LCM	IO81xv	DL9GCW	JN48vc	10.140248	0.2	-26	-1	944	112	2	4720	1311	2.5.4
2023-02-24 13:58	AG0X	EL96cd	AJ5S	EM42ui	18.106088	0.2	-26	0	1075	312	2	5375	1493	2.5.4
2023-02-24 13:58	AG0X	EL96cd	56IGJF	FN42ed	18.106021	0.2	-20	0	2007	25	2	10035	4460	2.6.0
2023-02-24 13:58	K1BUN	FN42jg	MOMIK	IO93ee	14.0971	5	-26	0	5128	51	2	1026	285	2.5.4
2023-02-24 13:58	N6CM	CM87xf	N7TUG	CN87tq	14.097028	0.2	-26	0	1163	359	2	5815	1615	
2023-02-24 13:58	VE6ATS	DO33cj	N7TUG	CN87tq	14.097198	0.2	-27	0	877	227	2	4385	1096	
2023-02-24 13:58	W1FVB	FN44fl	DJ6DK	JN48fw	21.096081	1	-15	0	5830	55	2	5830	3401	2.5.4
2023-02-24 13:58	VK6KOZ	OF77vv	VK4TDI	QG62lm	7.040157	0.5	-19	0	3605	92	2	7210	3405	
2023-02-24 13:58	VK1KF	QF44mr	VK4TDI	QG62lm	7.040108	5	-6	-1	943	24	2	189	158	
2023-02-24 13:58	G4ZFQ	1090ir	G4SDL	IO83tk	5.288792	1	-8	0	310	347	2	310	241	2.2.159
2023-02-24 13:58	W8AC	EN91jm	VE7AFZ	CN89mg	28.126044	5	-29	0	3326	299	2	665	129	2.6.1
2023-02-24 13:58	W9VW	EM79	WB6JHI	CM97af	28.125997	0.2	-25	3	3206	277	2	16030	4898	2.2.0-rc15
2023-02-24 13:58	WA9WTK	FN42fk	WB6JHI	CM97af	28.126047	10	-12	3	4280	280	2	428	285	2.2.0-rc15
2023-02-24 13:58	N9NIC	EN55fx	VE7AFZ	CN89mg	28.126013	0.2	-32	0	2510	291	2	12550	1394	2.6.1
2023-02-24 13:58	WOVI	EN35	WB6JHI	CM97af	28.126062	0.2	-27	3	2565	259	2	12825	3206	2.2.0-rc15
2023-02-24 13:56	W8RBW	EN72qr	NIOL	DM79mo	24.926061	0.2	-5	0	1733	265	2	8665	7462	2.5.0
2023-02-24 13:56	DK3BI	JN49gu	HA3MG	JN96db	7.040102	0.2	-11	0	839	116	2	4195	2913	2.1.2
2023-02-24 13:56	G4USI/W	IO81ia	DL4RU	JN69cr	3.570115	0.2	-17	0	1106	91	2	5530	2919	1.4A Kiwi

http://wspr.rocks

Gladstone Signal Spotting Challenge

- •We Hope for Significantly Higher Spot Counts in 2023 and 2024
- •The HamSCI Website has Details on the Challenge and Links to WSPR and FST4W
- https://hamsci.org/contest-info
- https://hamsci.org/gssc-faqs
- https://hamsci.org/gssc-rules
- •Results Will Be Published

Gladstone Signal Spotting Challenge

http://hamsci.org

- Appeals to Those Already Interested in Radio Wave Propagation
- Employs Digital Modes for Both Short Term Feedback and Long Term Studies of HF Propagation

Gladstone Signal Spotting Challenge

- •Commonly Used Mode Whose data are Useful for Visualization, is WSPR (Weak Signal Propagation Reporter, c. 2010)
- •We Also Promote FST4W to Yield a Richer Data Set
- Equipment Needs are Very Simple Racks Full of Gear are Definitely *not* Required!

Simple Raspberry Pi based WSPR Transmitter, courtesy <u>https://tapr.org</u>

SEQP 2017: RBN Spot Observations

RBN Spot Observations Near the Time of Totality

Great circle distance between transmitter and receiver versus epoch for frequencies in the amateur radio bands color coded by spot density. For the contours, the underlying grid is 500 km by 10-min bins. The dashed white line shows obscuration at a representative point 40° N, 100° W (roughly the middle of the continental US).

(Frissell et al, 2018)

SEQP 2017: RBN Spot Observations

(Frissell et al, 2018)

http://hamsci.org

<u>HamSC ï</u>

Time Delay of Arrival (TDOA) Event

- For Science-Minded Amateurs to Be Part of a Controlled Experiment
- Transmit/Receive "Chirp Signals" Custom Generated for Your Station/Callsign During Eclipses
- Measure Changes in the Observed F2 Layer Height as the Eclipse Impacts the Ionosphere

- The HamSCI Website has All of the Details Including a Sign-Up Form
- https://hamsci.org/tdoa-event-2023

Image: S. Cerwin, WA5FRF

Grape Personal Space Weather Stations

- HamSCI PSWS Project Placing Low-Cost SDRs in Dozens (Hundreds?)
- of Locations Across the Americas.
- The Grape PSWS serves a very specific Purpose:
- Recording Changes in the Ionosphere through Measurements of Doppler Frequency Shifts Observed by 24/7 Monitoring of Frequency Standard Stations <u>WWV/H</u> & <u>CHU</u>

Grape PSWS receiver/mixer board 0.88 x 1.56 inches

Grape PSWS - For More Information

- the Sun Greatly Affects the Ionosphere
- We Can Sense the Bottom Side by

http://hamsci.org

Measuring the Received Frequency of Stations such as WWV/H & CHU to millihertz Precision

Full details on how to build, how to participate and the science behind the PSWS, visit <u>https://hamsci.org/grape</u>

34

In Summary: FoEIS is Fun, with a Purpose

Message to hams: Long term benefits of participation

- Improved Understanding of HF Propagation
- Improved Models of the Ionosphere
- More Accurate Propagation Forecasts
- Who Knows What Else?
- Scientific Discoveries are Never Planned, Only Experienced

Interested in Participating?

- Follow <u>HamSCI.org/eclipse</u> and Join <u>https://groups.google.com/g/hamsci-eclipse</u>
- Pre-register for the Events at <u>HamSCI.org/eclipse</u>
- Operate in the SEQP, TDOA Event , or Build a Grape Receiver!

FoEIS: Festival of Eclipse Ionospheric Science

Publications

HamSCI Research Presented and Published in Many Different Fora Examples include:

- American Geophysical Union Fall Meetings
- Frontiers in Astronomy and Space Sciences
- Institute of Electrical and Electronic Engineers' Geoscience and Remote Sensing Letters
- Institute of Electrical and Electronic Engineers' Transactions on Antennas and Propagation
- CQ, Amateur Radio Communications & Technology (CQ Communications, Inc.)
- QEX, A Forum for Communications Experimenters (American Radio Relay League)
- QST (American Radio Relay League)

Acknowledgments

We are especially grateful for the

- support of NSF Grants AGS-2002278, AGS-1932997, AGS-1932972, AGS-2045755, AGS-2230345, and AGS-2230346.
- Support of the NASA SWO2R Grant 80NSSC21K1772.
- Support of Amateur Radio Digital Communication (ARDC).
- Amateur Radio Community Volunteers who Have Contributed to HamSCI Projects
- Amateur Radio Community who Produced and Provided HF radio Observations Mentioned Here Especially Operators of the Reverse Beacon Network (RBN, reversebeacon.net), the Weak Signal Propagation Reporting Network (WSPRNet, wsprnet.org), PSKReporter (pskreporter.info) qrz.com, and hamcall.net.
- Use of the Free Open Source Software Projects Used in this Analysis: Ubuntu Linux, python (van Rossum, 1995), matplotlib (Hunter, 2007), NumPy (Oliphant, 2007), SciPy (Jones et al., 2001), pandas (McKinney, 2010), xarray (Hoyer & Hamman, 2017), iPython (Pérez & Granger, 2007), and others (e.g., Millman & Aivazis, 2011).

Questions? k8te@arrl.org

